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Outline

© Super-resolution
@ Resolution in imaging
@ Super-resolution limit and min-max error
@ Super-resolution algorithms
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Source localization with sensor array

M Sensors :
S point sources
aperturel E located at wj € [0,1)
with amplitudes x;

far field

Point sources: x(t) = Zle xj0(t —wj), wj€[0,1)

Measurement at the mth sensor, m=20,... M —1:
S
Vm = ije—Zﬂlmwj T e
Jj=1

Measurements: {ym:m=0,...,M—1}

. ; S ; S
To recover: source locations {w;}7_; and source amplitudes {x;}>_

1
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Rayleigh criterion
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Rayleigh
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Inverse Fourier transform and the MUSIC algorithm

Multiple Signal Classification (MUSIC): [Schmidt 1981]

noise-free

noisy



Interesting questions

@ What is the super-resolution limit of the “best” algorithm?

@ What is the super-resolution limit of a specific algorithm?

» MUSIC [Schmidt 1981]
» ESPRIT [Roy and Kailath 1989]
» the matrix pencil method [Hua and Sarkar 1990]
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Existing works

@ Super-resolution limit with continuous measurements

» Donoho 1992, Demanet and Nguyen 2015

@ Performance guarantees for well separated point sources

» Total variation minimization [Candés and Fernandez-Granda 2013,2014,
Tang, Bhaskar, Shah and Recht 2013, Duval and Peyré 2015, Li 2017]

» Greedy algorithms [Duarte and Baraniuk 2013, Fannjiang and L. 2012]
» MUSIC [L. and Fannjiang 2016]
» The matrix pencil method [Moitra 2015]

© Performance guarantees for super-resolution

» Total variation min for positive sources [Morgenshtern and Candes
2016] or sources with certain sign pattern [Benedetto and Li 2016]

» Lasso for positive sources [Denoyelle, Duval and Peyré 2016]



Discretization on a fine grid

@ Point sources: u = 2,17\/:—01 XnOn/n With x € (Cg

@ Measurement vector
y=®&x+e

where ® € CM*N i the first M rows of the N x N DFT matrix:

(Dm,n _ e—27rlmn/N

and |le]l2 < 4.

Super-resolution factor (SRF) := 1
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Connection to compressive sensing

Yy

Sensing matrices contain certain rows of the DFT matrix.

(a) compressive sensing

(b) super-resolution
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Min-max error

Definition (S-min-max error)

Fix positive integers M, N, S such that S < M < N and let § > 0. The
S-min-max error is

E(M,N,S,d) = inf sup sup  ||X — x]|2.
%=%(y,M,N,$,6)EC" xeCl ecCM:| e||2<5
y=®x+e
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Sharp bound on the min-max error
Theorem (Li and L. 2017)

There exist constants A(S), B(S), C(S) such that:
@ Lower bound. If M >2S and N > C(2S)M>3/2, then

b
2B(2S)VM

@ Upper bound. If M > 45(25 +1) and N > M?/(252), then

E(M,N,S,5) > SRF2>~1,

26
EM,N,S,8) < — = SRF?>1,
( = A(2S)VM

The best algorithm in the upper bound:

min||z|lo subject to||Pz — y|l2 < o

W. Li and W. Liao, “Stable super-resolution limit and smallest singular value of restricted Fourier matrices,” preprint,
arXiv:1709.03146.
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Multiple Signal Classification (MUSIC)

Pioneering work: Prony 1795
e MUSIC in signal processing: Schmidt 1981

e MUSIC in imaging: Devaney 2000, Devaney, Marengo and Gruber
2005, Cheney 2001, Kirsch 2002

Related: the linear sampling method [Cakoni, Colton and Monk
2011], factorization method [Kirsch and Grinsberg 2008]
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MUSIC

Assumption: S is known.

S
ym:ZXje—%r/mwj’ m=0,...,M—1.
j=1

Yo nmn ... YmM-L
yr o y2 ... YmM-1L41
H= Hankel(y) = . ] ) ) + — ¢L X (q)/\/l—L-i-l)T
: . : ~ O~
LxS SxS SX(M—L—‘,—]_)
}/L—l )/[_ e yM—l

where
X = diag(xi, ..., xs)
ot (w) = [1 e2miv e—27ri(L—1)w]T c L
b =[o"(w1) ... ¢'(ws)] € C°.
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MUSIC with noiseless measurements

H = ¢LX(¢M7L+1)T
Suppose {w;}?_; are distinct.
Q If L> S, rank(l) =S,
Q@ If M—L+1>S, Range(H) = Range(®l).
Q If L> S+ 1, rank([®L ¢t (w)]) = S + 1 if and only if w ¢ {wj}le.

Theorem
IfL>S+1andM—-L+1>S we {wj}le iff pt(w) € Range(H). J

Exact recovery with M > 25 regardless of the support .
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Range(H) =/Rahge(®L) signal space

oL (w1)

ot (ws
\ W) w g {wii,
6

noise space

o Noise-space correlation function: N(w) = W

@ Imaging function: J(w) = T

\_/

N(wj) =0and J(wj) =00, j=1,...,S.
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MUSIC with noisy measurements

Three sources separated by 0.5 RL, e ~ N(0,02/y)

imaging funcion

(c)o=0 (d) o =0.001 (e) o =0.01

Recall upper bound of the min-max error

)
~ \/_
1 )25—1'

The noise that the “best” algorithm can handle is § ~ (SR—F

E(M,N,S,8) < ——SRF?>!
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Phase transition
@ S consecutive point sources on the grid with spacing 1/N
@ Support error: d({wj}le,{@j}le
o Noise e ~ N(0,02Iy) + i - N(0,05%1y), so E|le|]l» = vV2Mo.

log, (bottleneck error / separation) log, (bottleneck error / separation)

log, (bottleneck error / separation)

noise level log, »

noise level log, »
F . I3 . =
o & o B
noise level log,  »
. I3 . =
o & o o

0.8 -0.6 -0.4 0.2 0 4.54 0.8 -0.6 0.4 -0.2 0
log ,SRF -log, ;SRF
5 - S =
Figure: The average Iogﬂ%] over 100 trials with respect to log;y g

(x-axis) and log;y o (y-axis).



Super-resolution limit of MUSIC

Phase transitign curve

+1 H +‘S=2 sln‘pe = 3.3137]
The phase transition curve is  s[|==sssoelsa
2 == S=5 slope = 9.9286|

1 p(S) |22

ag ~ _— Ene -2.4
( SRF ) g 26

b 28

where T s

32

25 —1< p(S) < 25. oy

P -09 -08 -07 -06 -05 -04 -03 -02 -01 0
-IongRF

Future work:

Support error by MUSC < SRFP() . o
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Outline

@ Sensor calibration
@ Problem formulation
@ Uniqueness
@ An optimization approach
@ Numerical simulations
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Sensor calibration

Measurement at the m-th sensor, m=20,..., M — 1:
S .
Ym(t) = &m Y _ xj(£)e ™™™ + en(t)
j=1

Multiple snapshots of measurements:
{ym(t)ym=0,....M—1 teTl}

To recover:
N _ M-1 M
e Calibration parameters g = {gm},_o € C

@ Source locations {wj}jszl and source amplitudes x;(t)
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Assumptions

Matrix form:

y(t) = dins(g) A x(£) + e(t)
cM cMxM CMXS s cM
A = e—27rimwj-

nj =

x(t) = Da(t) . xs(OIT, y(8) = [o(t) ... ym-1(t)]7, e(t) = [eo(t) . .. em—1(t)]”
Assumptions:

Q |gm|#0, m=0,....M—1;

@ Ex(t) =0 and Ee(t) = 0;

@ R*:= Ex(t)x*(t) = diag({12}2,);

Q Ex(t)e*(t) =0;

@ Ee(t)e*(t) = oIy where o represents noise level.
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Uniqueness up to a trivial ambiguity

Trivial ambiguity: {&,{@;}7_,, %(t)} is called equivalent to

=X
{g, {wj}jzl, x(t)} up to a trivial ambiguity if there exist cp > 0, ¢1, 2 € R:

g = {&m = coe' gy )15
S = {@j 1 & =wj — C2/(27T)}j'§:1
x(t) = x(t)cy te .

Uniqueness with infinite snapshots of noiseless measurements:

Let frn =7 1 77e™™, m=0,...,M—1.

Theorem

Suppose |fi| >0 and M > S+ 1. Let {g, {wj}le,x(t)} be a solution to
the calibration problem. If there is another solution {g, {@j}le, x(t)},
then {g, {(I)J-}J.S:l,f((t)} is equivalent to {g, {wj}js:l,x(t)}.
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Covariance matrix
Pioneering work: Full algebraic method [Paulraj and Kailath, 1985],
Partial algebraic method [Wylie, Roy and Schmitt, 1993]

RY :=Ey(t)y*(t) = diag(g)AR* A*diag(g)

fo Ao v
H:CM — CMM . H(f) = f fo R ARXA*. Then
| fvo1 2 o fy ]

R” = diag(g)H(f)diag(&)
Rr};,n = 8m&nTm—n

When f; # 0, the diagonal and subdiagonal entries in RY determine the

solution up to a trivial ambiguity.
24 /32



Algebraic methods

Sensitivity of the partial algebraic method:

e N >s+1, |fi] > 0 and sources are separated by 1/M.

@ Empirical covariance matrix is computed with L snapshots of
measurements.

We proved that,

2

. . ; max(co, o

E  min  max|cqgm—e(@tm2g | <0 max(a, %) ,
c>0,c1,0€ER m \/Z

Partial algebraic method: only diagonal and subdiagonal entries in the
covariance matrix are used

Full algebraic method: problem of phase wrapping
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An optimization approach

R = GAR*A*G* = diag(g)H(f)diag(g)

Optimization problem:

min L(g,f) := ‘

~ 112
i f)diag(g) — RY|| .
min, diag(g)H(F)ding(®) — R’

o IfRY = RY, the global minimizer of L is equivalent to the ground
truth (g, f).
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Regularized optimization

Goal: prevent ||g|| — oo and ||f|| — 0 (or vice versa)
no is an estimator of ng ;=

Regularized optimization:

min L(g,f) = L(g,f) + G(g.f)
g,feCN

s o(55) o ()]

where Go(z) = (max(z — 1,0))? and p > %

Initialization: (g%, %) : ||g°|%> < v/2no, ||f°|| < v/2Mo
Feasible set: N5, = {(g,f) : ||gl|® < 2v/no, ||f|| < 2v/No}

llg|l?|| ]| from the partial algebraic method.
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Wirtinger gradient descent

fork=1,2,...,
° gk _ gk—1 _ nkvgi(gk—1’ fk—l)
° fk — fk—l _ nka/j(gk_l, fk—l)
end

Theorem (Eldar, L. and Tang)
If the step length is chosen such that

2
k<
146n0 max(v/Mo, /Mo ) + 87 + 16 max(v/no, v/Mo) || RY — RYHF +

n
Y

then Wirtinger gradient descent gives rise to (gk, f¥) ¢ Nz, and

VL(gk, £4)|| — 0, as k — oc.

Y. C. Eldar, W. Liao and S. Tang, “Sensor calibration for off-the-grid spectral estimation]” preprint, arXiv: 1707.03378¢
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Sensitivity to the number of snapshots

@ the partial algebraic method
@ our optimization approach

@ an alternating minimization: [Friedlander and Weiss 1990]

@ 20 sources separated by 2/M and noise level o = 2

error)

log10(Relative calibration error)

success rate of support recovery

Success rate versys log19(#snapshot)

P
log10(#snapshot)
Relative calibration error versus L

Observation: Calibration error = O(L

25
log10(#snapshot)

Support success rate versus L
1

-1
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Sensitivity to noise level o

@ 20 sources separated by 2/M and L = 500

log10(calibration error) versus log10(-) rate) versus log10()

log10(success rate of support recovery)

log10(calibration error in the unit of AL)

log10(s) log10(c)

Relative calibration error versus o Support success rate versus o

Observation: Calibration error = O(0)
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Conclusion

@ Super-resolution
» Resolution limit and a sharp bound on the min-max error

» Resolution limit of the MUSIC algorithm

@ Sensor calibration
» Uniqueness with infinite snapshots of noiseless data
» The partial algebraic method and a stability analysis

» An optimization approach and convergence to a stationary point
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