Super-resolution and sensor calibration in imaging

Wenjing Liao

School of Mathematics, Georgia Institute of Technology

ICERM September 25, 2017

My collaborators

Albert Fannjiang UC Davis

Yonina C. Eldar Tel-Aviv University, Israel

Weilin Li UMD

Sui Tang JHU

Outline

- Super-resolution
 - Resolution in imaging
 - Super-resolution limit and min-max error
 - Super-resolution algorithms
- Sensor calibration
 - Problem formulation
 - Uniqueness
 - An optimization approach
 - Numerical simulations

Source localization with sensor array

$$M$$
 Sensors aperture \downarrow \Rightarrow S point sources located at $\omega_j \in [0,1)$ with amplitudes x_j

Point sources:
$$x(t) = \sum_{j=1}^{S} x_j \delta(t - \omega_j), \ \omega_j \in [0, 1)$$

Measurement at the *m*th sensor, m = 0, ..., M - 1:

$$y_m = \sum_{j=1}^{S} x_j e^{-2\pi i m \omega_j} + e_m$$

Measurements: $\{y_m : m = 0, ..., M - 1\}$

To recover: source locations $\{\omega_j\}_{j=1}^S$ and source amplitudes $\{x_j\}_{j=1}^S$.

Rayleigh criterion

$$\hat{x}(\omega) = \sum_{m=0}^{M-1} y_m \frac{e^{2\pi i m \omega}}{M}$$

Rayleigh length = 1/M

Inverse Fourier transform and the MUSIC algorithm

Multiple Signal Classification (MUSIC): [Schmidt 1981]

noise-free

Interesting questions

- What is the super-resolution limit of the "best" algorithm?
- What is the super-resolution limit of a specific algorithm?
 - MUSIC [Schmidt 1981]
 - ► ESPRIT [Roy and Kailath 1989]
 - the matrix pencil method [Hua and Sarkar 1990]

Existing works

- Super-resolution limit with continuous measurements
 - Donoho 1992, Demanet and Nguyen 2015
- Performance guarantees for well separated point sources
 - ▶ Total variation minimization [Candès and Fernandez-Granda 2013,2014, Tang, Bhaskar, Shah and Recht 2013, Duval and Peyré 2015, Li 2017]
 - Greedy algorithms [Duarte and Baraniuk 2013, Fannjiang and L. 2012]
 - MUSIC [L. and Fannjiang 2016]
 - The matrix pencil method [Moitra 2015]
- Performance guarantees for super-resolution
 - ► Total variation min for *positive* sources [Morgenshtern and Candès 2016] or sources with certain sign pattern [Benedetto and Li 2016]
 - ▶ Lasso for *positive* sources [Denoyelle, Duval and Peyré 2016]

Discretization on a fine grid

- Point sources: $\mu = \sum_{n=0}^{N-1} x_n \delta_{n/N}$ with $x \in \mathbb{C}_S^N$
- Measurement vector

$$y = \Phi x + e$$

where $\Phi \in \mathbb{C}^{M \times N}$ is the first M rows of the $N \times N$ DFT matrix:

$$\Phi_{m,n} = e^{-2\pi i m n/N}$$

and $||e||_2 \leq \delta$.

Super-resolution factor (SRF) :=
$$\frac{N}{M}$$

Connection to compressive sensing

Sensing matrices contain certain rows of the DFT matrix.

10 / 32

Min-max error

Definition (S-min-max error)

Fix positive integers M, N, S such that $S \leq M \leq N$ and let $\delta > 0$. The S-min-max error is

$$\mathcal{E}(M, N, S, \delta) = \inf_{\substack{\tilde{x} = \tilde{x}(y, M, N, S, \delta) \in \mathbb{C}^N \\ y = \Phi x + e}} \sup_{x \in \mathbb{C}^N \atop S} \sup_{e \in \mathbb{C}^M : ||e||_2 \le \delta} ||\tilde{x} - x||_2.$$

Sharp bound on the min-max error

Theorem (Li and L. 2017)

There exist constants A(S), B(S), C(S) such that:

1 Lower bound. If $M \ge 2S$ and $N \ge C(2S)M^{3/2}$, then

$$\mathcal{E}(M, N, S, \delta) \ge \frac{\delta}{2B(2S)\sqrt{M}} SRF^{2S-1}.$$

② Upper bound. If $M \ge 4S(2S+1)$ and $N \ge M^2/(2S^2)$, then

$$\mathcal{E}(M, N, S, \delta) \le \frac{2\delta}{A(2S)\sqrt{M}} SRF^{2S-1}.$$

The best algorithm in the upper bound:

$$\min \|z\|_0$$
 subject to $\|\Phi z - y\|_2 \le \delta$

W. Li and W. Liao, "Stable super-resolution limit and smallest singular value of restricted Fourier matrices," preprint, arXiv:1709.03146.

Multiple Signal Classification (MUSIC)

- Pioneering work: Prony 1795
- MUSIC in signal processing: Schmidt 1981
- MUSIC in imaging: Devaney 2000, Devaney, Marengo and Gruber 2005, Cheney 2001, Kirsch 2002
- Related: the linear sampling method [Cakoni, Colton and Monk 2011], factorization method [Kirsch and Grinsberg 2008]

MUSIC

Assumption: *S* is known.

$$y_m = \sum_{j=1}^{S} x_j e^{-2\pi i m \omega_j}, \ m = 0, \dots, M-1.$$

$$H = \operatorname{Hankel}(y) = \begin{bmatrix} y_0 & y_1 & \cdots & y_{M-L} \\ y_1 & y_2 & \cdots & y_{M-L+1} \\ \vdots & \vdots & \vdots & \vdots \\ y_{L-1} & y_L & \cdots & y_{M-1} \end{bmatrix} = \underbrace{\Phi^L}_{L \times S} \underbrace{X}_{S \times S} \underbrace{(\Phi^{M-L+1})^T}_{S \times (M-L+1)}$$

where

$$X = \operatorname{diag}(x_1, \dots, x_S)$$

$$\phi^L(\omega) = \begin{bmatrix} 1 & e^{-2\pi i \omega} & \dots & e^{-2\pi i (L-1)\omega} \end{bmatrix}^T \in \mathbb{C}^L$$

$$\Phi^L = [\phi^L(\omega_1) & \dots & \phi^L(\omega_S)] \in \mathbb{C}^{L \times S}.$$

MUSIC with noiseless measurements

$$H = \Phi^L X (\Phi^{M-L+1})^T$$

Suppose $\{\omega_j\}_{j=1}^S$ are distinct.

- ② If $M L + 1 \ge S$, Range $(H) = \text{Range}(\Phi^L)$.

Theorem

If
$$L \geq S + 1$$
 and $M - L + 1 \geq S$, $\omega \in \{\omega_j\}_{j=1}^S$ iff $\phi^L(\omega) \in \text{Range}(H)$.

Exact recovery with $M \ge 2S$ regardless of the support .

- Noise-space correlation function: $\mathcal{N}(\omega) = \frac{\|\mathcal{P}_{\text{noise}}\phi^L(\omega)\|_2}{\|\phi^L(\omega)\|_2}$
- Imaging function: $\mathcal{J}(\omega) = \frac{1}{\mathcal{N}(\omega)}$

$$\mathcal{N}(\omega_j) = 0$$
 and $\mathcal{J}(\omega_j) = \infty, \ j = 1, \dots, S$.

MUSIC with noisy measurements

Three sources separated by 0.5 RL, $e \sim N(0, \sigma^2 I_M)$

Recall upper bound of the min-max error

$$\mathcal{E}(M, N, S, \delta) \lesssim \frac{\delta}{\sqrt{M}} SRF^{2S-1}$$

The noise that the "best" algorithm can handle is $\delta \sim \left(\frac{1}{\mathrm{SRF}}\right)^{2S-1}$.

Phase transition

- ullet S consecutive point sources on the grid with spacing 1/N
- Support error: $d(\{\omega_j\}_{j=1}^S, \{\hat{\omega}_j\}_{j=1}^S)$
- Noise $e \sim N(0, \sigma^2 I_M) + i \cdot N(0, \sigma^2 I_M)$, so $\mathbb{E} ||e||_2 = \sqrt{2M} \sigma$.

Figure: The average $\log_2[\frac{\text{Support error}}{1/N}]$ over 100 trials with respect to $\log_{10}\frac{1}{\text{SRF}}$ (x-axis) and $\log_{10}\sigma$ (y-axis).

Super-resolution limit of MUSIC

The phase transition curve is

$$\sigma \sim \left(\frac{1}{\mathrm{SRF}}\right)^{p(S)}$$

where

$$2S-1\leq p(S)\leq 2S.$$

Future work:

Support error by MUSC $\lesssim SRF^{p(S)} \cdot \sigma$.

Outline

- Super-resolution
 - Resolution in imaging
 - Super-resolution limit and min-max error
 - Super-resolution algorithms
- Sensor calibration
 - Problem formulation
 - Uniqueness
 - An optimization approach
 - Numerical simulations

Sensor calibration

Measurement at the *m*-th sensor, m = 0, ..., M - 1:

$$y_m(t) = g_m \sum_{j=1}^{S} x_j(t) e^{-2\pi i m \omega_j} + e_m(t)$$

Multiple snapshots of measurements:

$$\{y_m(t), m = 0, \dots, M - 1, t \in \Gamma\}$$

To recover:

- Calibration parameters $g = \{g_m\}_{m=0}^{M-1} \in \mathbb{C}^M$
- Source locations $\{\omega_j\}_{j=1}^S$ and source amplitudes $x_j(t)$

Assumptions

Matrix form:

$$\underbrace{y(t)}_{\mathbb{C}^{M}} = \underbrace{\operatorname{diag}(g)}_{\mathbb{C}^{M \times M}} \underbrace{A}_{\mathbb{C}^{M \times S}} \underbrace{x(t)}_{\mathbb{C}^{S}} + \underbrace{e(t)}_{\mathbb{C}^{M}}$$
$$A_{n,j} = e^{-2\pi i m \omega_{j}}$$

$$x(t) = [x_1(t) \dots x_S(t)]^T, y(t) = [y_0(t) \dots y_{M-1}(t)]^T, e(t) = [e_0(t) \dots e_{M-1}(t)]^T$$
Assumptions:

- $|g_m| \neq 0, \ m = 0, \ldots, M-1;$
- $R^{\times} := \mathbb{E}x(t)x^{*}(t) = \operatorname{diag}(\{\gamma_{j}^{2}\}_{j=1}^{S});$
- **9** $\mathbb{E}x(t)e^*(t) = 0;$
- **1** $\mathbb{E}e(t)e^*(t) = \sigma^2 I_M$ where σ represents noise level.

Uniqueness up to a trivial ambiguity

Trivial ambiguity: $\{\tilde{g}, \{\tilde{\omega}_j\}_{j=1}^S, \tilde{x}(t)\}$ is called equivalent to $\{g, \{\omega_j\}_{j=1}^S, x(t)\}$ up to a trivial ambiguity if there exist $c_0 > 0, c_1, c_2 \in \mathbb{R}$:

$$\tilde{g} = { \tilde{g}_m = c_0 e^{i(c_1 + mc_2)} g_m }_{m=0}^{M-1}
\tilde{S} = { \tilde{\omega}_j : \tilde{\omega}_j = \omega_j - c_2/(2\pi) }_{j=1}^{S}
\tilde{x}(t) = x(t) c_0^{-1} e^{-ic_1}.$$

Uniqueness with infinite snapshots of noiseless measurements:

Let
$$f_m = \sum_{j=1}^{s} \gamma_j^2 e^{2\pi i m \omega_j}, \ m = 0, ..., M-1.$$

Theorem

Suppose $|f_1| > 0$ and $M \ge S + 1$. Let $\{g, \{\omega_j\}_{j=1}^S, x(t)\}$ be a solution to the calibration problem. If there is another solution $\{\tilde{g}, \{\tilde{\omega}_j\}_{j=1}^S, \tilde{x}(t)\}$, then $\{\tilde{g}, \{\tilde{\omega}_j\}_{j=1}^S, \tilde{x}(t)\}$ is equivalent to $\{g, \{\omega_j\}_{j=1}^S, x(t)\}$.

Covariance matrix

Pioneering work: Full algebraic method [Paulraj and Kailath, 1985], Partial algebraic method [Wylie, Roy and Schmitt, 1993]

$$R^y := \mathbb{E} y(t) y^*(t) = \mathrm{diag}(g) A R^x A^* \mathrm{diag}(\bar{g})$$

$$\mathcal{H}: \mathbb{C}^{M} \to \mathbb{C}^{M \times M}: \ \mathcal{H}(f) := \begin{bmatrix} f_{0} & \overline{f}_{1} & \ddots & \overline{f}_{N-1} \\ f_{1} & f_{0} & \ddots & \overline{f}_{N-2} \\ \ddots & \ddots & \ddots & \ddots \\ f_{N-1} & f_{N-2} & \ddots & f_{0} \end{bmatrix} = AR^{\times}A^{*}. \ \mathsf{Then}$$

$$\begin{split} R^y &= \mathrm{diag}(g) \mathcal{H}(f) \mathrm{diag}(\bar{g}) \\ R^y_{m,n} &= g_m \bar{g}_n f_{m-n} \end{split}$$

When $f_1 \neq 0$, the diagonal and subdiagonal entries in R^y determine the solution up to a trivial ambiguity.

Algebraic methods

Sensitivity of the partial algebraic method:

- $N \ge s + 1$, $|f_1| > 0$ and sources are separated by 1/M.
- Empirical covariance matrix is computed with *L* snapshots of measurements.

We proved that,

$$\mathbb{E} \min_{c_0 > 0, c_1, c_2 \in \mathbb{R}} \max_{m} |c_0 \widehat{g}_m - e^{i(c_1 + mc_2)} g_m| \leq O\left(\frac{\max(\sigma, \sigma^2)}{\sqrt{L}}\right),$$

Partial algebraic method: only diagonal and subdiagonal entries in the covariance matrix are used

Full algebraic method: problem of phase wrapping

An optimization approach

$$R^y = GAR^xA^*G^* = \mathrm{diag}(g)\mathcal{H}(f)\mathrm{diag}(\bar{g})$$

Optimization problem:

$$\min_{\boldsymbol{g},\boldsymbol{f}\in\mathbb{C}^M}\mathcal{L}(\boldsymbol{g},\boldsymbol{f}):=\left\|\mathrm{diag}(\boldsymbol{g})\mathcal{H}(\boldsymbol{f})\mathrm{diag}(\boldsymbol{\bar{g}})-\widehat{R}^y\right\|_F^2.$$

• If $\widehat{R}^y = R^y$, the global minimizer of \mathcal{L} is equivalent to the ground truth (g, f).

Regularized optimization

Goal: prevent $\|\mathbf{g}\| \to \infty$ and $\|\mathbf{f}\| \to 0$ (or vice versa) \widehat{n}_0 is an estimator of $n_0 := \|g\|^2 \|f\|$ from the partial algebraic method.

Regularized optimization:

$$\min_{\mathbf{g},\mathbf{f}\in\mathbb{C}^N}\tilde{\mathcal{L}}(\mathbf{g},\mathbf{f}):=\mathcal{L}(\mathbf{g},\mathbf{f})+\mathcal{G}(\mathbf{g},\mathbf{f})$$

$$\mathcal{G}(\mathbf{g}, \mathbf{f}) = \rho \left[\mathcal{G}_0 \left(\frac{\|\mathbf{f}\|^2}{2\widehat{n}_0} \right) + \mathcal{G}_0 \left(\frac{\|\mathbf{g}\|^2}{\sqrt{2\widehat{n}_0}} \right) \right]$$

where
$$\mathcal{G}_0(z)=(\max(z-1,0))^2$$
 and $ho\geq rac{3\widehat{n}_0+\|R^y-\widehat{R}^y\|_F}{(\sqrt{2}-1)^2}$

Initialization:
$$(\mathbf{g}^0, \mathbf{f}^0) : \|\mathbf{g}^0\|^2 \le \sqrt{2\widehat{n}_0}, \|\mathbf{f}^0\| \le \sqrt{2\widehat{n}_0}$$

Feasible set:
$$\mathcal{N}_{\widehat{n}_0} = \{(\mathbf{g}, \mathbf{f}) : \|\mathbf{g}\|^2 \le 2\sqrt{\widehat{n}_0}, \|\mathbf{f}\| \le 2\sqrt{\widehat{n}_0}\}$$

Wirtinger gradient descent

for
$$k = 1, 2, ...,$$

$$\bullet \ \mathbf{g}^k = \mathbf{g}^{k-1} - \eta^k \nabla_{\mathbf{g}} \tilde{\mathcal{L}}(\mathbf{g}^{k-1}, \mathbf{f}^{k-1})$$

•
$$\mathbf{f}^k = \mathbf{f}^{k-1} - \eta^k \nabla_{\mathbf{f}} \tilde{\mathcal{L}}(\mathbf{g}^{k-1}, \mathbf{f}^{k-1})$$

end

Theorem (Eldar, L. and Tang)

If the step length is chosen such that

$$\eta^k \leq \frac{2}{146\widehat{n}_0 \max(\sqrt{\widehat{n}_0}, \sqrt[4]{\widehat{n}_0}) + 8\widehat{n}_0 + 16\max(\sqrt{\widehat{n}_0}, \sqrt[4]{\widehat{n}_0}) \|R^y - \widehat{R}^y\|_F + \frac{8\rho}{\min(\widehat{n}_0, \sqrt{\widehat{n}_0})}}$$

then Wirtinger gradient descent gives rise to $(\mathbf{g}^k, \mathbf{f}^k) \in \mathcal{N}_{\widehat{n}_0}$, and

$$\|\nabla \tilde{\mathcal{L}}(\mathbf{g}^k, \mathbf{f}^k)\| \to 0$$
, as $k \to \infty$.

Y. C. Eldar, W. Liao and S. Tang, "Sensor calibration for off-the-grid spectral estimation," preprint, arXiv: 1707.03378 🔾 🔾

Sensitivity to the number of snapshots

- the partial algebraic method
- our optimization approach
- an alternating minimization: [Friedlander and Weiss 1990]
- 20 sources separated by 2/M and noise level $\sigma = 2$

Relative calibration error versus L

Support success rate versus L

Observation: Calibration error = $O(L^{-\frac{1}{2}})$

Sensitivity to noise level σ

• 20 sources separated by 2/M and L = 500

Relative calibration error versus σ

Support success rate versus σ

Observation: Calibration error = $O(\sigma)$

Conclusion

- Super-resolution
 - Resolution limit and a sharp bound on the min-max error
 - Resolution limit of the MUSIC algorithm
- Sensor calibration
 - Uniqueness with infinite snapshots of noiseless data
 - The partial algebraic method and a stability analysis
 - ▶ An optimization approach and convergence to a stationary point

Thank you for your attention! Wenjing Liao

Georgia Institute of Technology

wliao60@gatech.edu

http://people.math.gatech.edu/~wliao60